Search results

1 – 3 of 3
Article
Publication date: 9 June 2021

Nur Husnina Saadun, Nurul Aini Jaafar, Md Faisal Md Basir, Ali Anqi and Mohammad Reza Safaei

The purpose of this study is to solve convective diffusion equation analytically by considering appropriate boundary conditions and using the Taylor-Aris method to determine the…

Abstract

Purpose

The purpose of this study is to solve convective diffusion equation analytically by considering appropriate boundary conditions and using the Taylor-Aris method to determine the solute concentration, the effective and relative axial diffusivities.

Design/methodology/approach

>An analysis has been conducted on how body acceleration affects the dispersion of a solute in blood flow, which is known as a Bingham fluid, within an artery. To solve the system of differential equations analytically while validating the target boundary conditions, the blood velocity is obtained.

Findings

The blood velocity is impacted by the presence of body acceleration, as well as the yield stress associated with Casson fluid and as such, the process of dispersing the solute is distracted. It graphically illustrates how the blood velocity and the process of solute dispersion are affected by various factors, including the amplitude and lead angle of body acceleration, the yield stress, the gradient of pressure and the Peclet number.

Originality/value

It is witnessed that the blood velocity, the solute concentration and also the effective and relative axial diffusivities experience a drop when either of the amplitude, lead angle or the yield stress rises.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2018

Chandra Shekar Balla, C. Haritha, Kishan Naikoti and A.M. Rashad

The purpose of this paper is to investigate the bioconvection flow in a porous square cavity saturated with both oxytactic microorganism and nanofluids.

Abstract

Purpose

The purpose of this paper is to investigate the bioconvection flow in a porous square cavity saturated with both oxytactic microorganism and nanofluids.

Design/methodology/approach

The impacts of the effective parameters such as Rayleigh number, bioconvection number, Peclet number and thermophoretic force, Brownan motion and Lewis number reduces the flow strength in the cavity on the flow strength, oxygen density distribution, motile isoconcentrations and heat transfer performance are investigated using a finite volume approach.

Findings

The results obtained showed that the average Nusselt number is increased with Peclet number, Lewis number, Brownian motion and thermophoretic force. Also, the average Sherwood number increased with Brownian motion and Peclet number and decreased with thermophoretic force. It is concluded that the flow strength is pronounced with Rayleigh number, bioconvection number, Peclet number and thermophoretic force. Brownan motion and Lewis number reduce the flow strength in the cavity.

Originality/value

There is no published study in the literature about sensitivity analysis of Brownian motion and thermophoresis force effects on the bioconvection heat transfer in a square cavity filled by both nanofluid and oxytactic microorganisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3